Profiling cellular dynamics PLoS article featured as a perspective in Science Trends magazine

A paper by postdoctoral fellow Xiao Ma, recently published in PLOS Computational Biology, was highlighted as a perspective article by Science Trends. This magazine reports and shares novel, outstanding scientific research progress with a large, global audience.

Abstract from PloS article:
Cellular morphology and associated morphodynamics are widely used for qualitative and quantitative assessments of cell state. Here we implement a framework to profile cellular morphodynamics based on an adaptive decomposition of local cell boundary motion into instantaneous frequency spectra defined by the Hilbert-Huang transform (HHT). Our approach revealed that spontaneously migrating cells with approximately homogeneous molecular makeup show remarkably consistent instantaneous frequency distributions, though they have markedly heterogeneous mobility. Distinctions in cell edge motion between these cells are captured predominantly by differences in the magnitude of the frequencies. We found that acute photo-inhibition of Vav2 guanine exchange factor, an activator of the Rho family of signaling proteins coordinating cell motility, produces significant shifts in the frequency distribution, but does not affect frequency magnitude. We therefore concluded that the frequency spectrum encodes the wiring of the molecular circuitry that regulates cell boundary movements, whereas the magnitude captures the activation level of the circuitry. We also used HHT spectra as multi-scale spatiotemporal features in statistical region merging to identify subcellular regions of distinct motion behavior. In line with our conclusion that different HHT spectra relate to different signaling regimes, we found that subcellular regions with different morphodynamics indeed exhibit distinct Rac1 activities. This algorithm thus can serve as an accurate and sensitive classifier of cellular morphodynamics to pinpoint spatial and temporal boundaries between signaling regimes.

Previous
Previous

A deep learning program using live cell images to classify melanoma cell populations.

Next
Next

Jane Coffin Childs Memorial Fund Fellowship Award